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My research is in equivariant homotopy theory. One of my core aims is to extend Blumberg and

Hill’s N∞-operad theory [BH15], which is an extension of non-equivariant E∞-operad theory

that incorporates norms in a highly structured way. The importance of this theory is that it

provides an overarching framework for norm maps, which, ever since the Hill-Hopkins-Ravenel

solution to the Kervaire Invariant One problem [HHR15], has proven to be essential to the study

of equivariant spectra. However, an analogous extension of Ek-operads is still unclear, and there

are open questions about how such an extension would behave. Answering this is the central goal

of my research. Ultimately, the hope is that such an extension will lead to a better understanding

of multiplicative objects that appear in equivariant stable homotopy theory, obstructions to such

objects, and in practice, help further computations.

1 Background

In Algebraic Topology, one considers algebraic objects in homotopy categories. Since homotopy

categories are categories where weak equivalences are formally inverted, one immediately finds

that the maps that underlie the algebraic object don’t necessarily satisfy the same defining re-

lations, if any. This lack of structure makes arguing about the objects in homotopy from the

underlying point set model difficult – so we add it. This sacrifices simplicity for more control.

Fortunately, homotopy theorists have developed a wide range of tools to deal with this added

complexity. One of the most important is the notion of an operad.

The central idea of an operad is not to choose single representations of homotopy classes but

instead work with a range of possible choices. Specifically, a topological operad P consists of a

collections of spaces {P(n)}n∈N in Top, along with maps

γ : P(n)× P(k1)× · · · × P(kn)→ P(k1 + · · ·+ kn)

called composition maps. These objects and maps must then satisfy a bunch of conditions that

emulate the expected properties of the collections {Hom(X n, X )}n∈N and composition in each

component. The intuition is that these objects P(n) parameterise a range of possible n-ary op-

erators on objects. Specific objects X with an algebraic structure determined by this operad P

– called P-algebras – are then given by maps P(n) → Hom(X n, X ). These must be compati-

ble with the expected associativity, unitality and commutativity relations. Moreover, the spaces

P(n) must have an action by Σn, which is well-behaved with the operadic structure. This action

corresponds with permuting the inputs of Hom(X n, X ).

The power of operads is that not only does P(n) encode possible choices of n-array operators,

but as these are spaces, they also encode higher homotopic information. i.e., paths parameterise
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homotopies between choices, 2-cells parameterise homotopies between homotopies and so on.

This information is precisely the added structure we want. We can leverage this to build better

point-set models that underlie homotopy categories.

An essential class of operads are the Ek-operads. There are a few different ways to think of

these. The most straightforward method is to think about the standard model for them: the

little cubes operad of Boardman and Vogt. We will write □k = [0,1]k and say that a little n-cube

is a rectilinear embedding
∐

n

□k→ □k.

The operad is then Ck(n) := Emb(
∐

n□
k,□k) and composition is then given by function com-

position. The main example of a Ck-algebra are k-fold loop spaces X = ΩkY

The action of Σn on Ck(n) permutes the order of the little cubes. Observe that Σn acts freely,

and depending on k, we might be able to find homotopies, and higher homotopies, between

little cubes in the same orbit. If k <∞, we will eventually get stuck in finding higher homo-

topies. If k =∞, these spaces are contractible, so we can always find such higher homotopies.

This behaviour gives us one interpretation of Ek-operads: these are operads that encode per-

mutations of inputs on multiplications maps, as well as homotopies and higher homotopies of

these – at least up to a certain point depending on k. When k =∞, we record all possible

higher homotopical data. i.e., we have the homotopy-coherent case. Hence, the Ek-operads en-

code highly structured data for a multiplication that lies between just associativity to something

commutative.

Another interpretation of Ek-operads is that these are operads that encode objects with k

different multiplications that interchange. A good illustration of this behaviour is the k-fold

loop spaces ΩkX . For the 2-fold case we have

Ω2X ∼= Hom(□2, X )∼= Hom(□1
v , Hom(□1

h, X ))∼= Hom(□1
h,Hom(□1

v , X )).

Here v and h denote vertical and horizontal, and each direction corresponds to a different com-

position ◦v and ◦h of Ω2X . The two different compositions interchange in that

( f ◦v g) ◦h (h ◦v k) = ( f ◦h h) ◦v (g ◦h k).

Given two operads P and Q, the Boardman-Vogt tensor product P ⊗Q is the operad that uni-

versally encodes the two algebraic structures of P and Q and the interchange of these two.

The operad E1 = C1 encodes associativity up to homotopy, and so under this interpretation,

we expect that Ek to be tensor powers of E1. A classic result by Dunn [Dun88] and extended
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by Brinkmeier [Bri00] connects these two interpretations. They showed that for the little cube

operads, there is a weak equivalence of operads

Cn ⊗Cm ≃Cn+m.

Now, Ek-operads encode multiplication maps in a highly structured way. However, equivariantly

there is more that we want to encode. The most important of which is the structure of norm

maps.

Greenlees and May first introduced these in [GM97] and played a central role in the Hill-

Hopkins-Ravenel solution [HHR15] to the Kervaire Invariant One problem. We will find it prefer-

able to think of norm maps on a G-object as “twisted” multiplication maps of the form X |G/H|→
X . Here G not only acts on each copy of X but also permutes the indices of the products. More

generally, for each finite G-set T , we can talk about norm maps as maps of the form ×T X → X

where G acts on the indexing as well as on each copy of X .

Blumberg and Hill [BH15] extended E∞-operad theory to include the extra data of norm maps

in a homotopical meaningful way, which they dubbed N∞-operads. Different N∞-operads are

allowed to encode different norm maps. This combinatorial data gets encapsulated in the notion

of an indexing system. Indexing systems are certain kinds of categorical coefficient systems in

finite equivariant sets. It turns out that the homotopy category of N∞-operads is equivalent to

the category of indexing systems (See [BH15], [Rub21], [GW18], [BP21]). That is, these operads

are completely determined by what norm maps they encode.

2 Current Work

Blumberg and Hill’s work extends the E∞ case, but what about Ek in general? Answering this

is the central goal of my research.

Question 1. What is a good model for “Nk-operads”? What properties do they have?

In this section, I will talk about two threads of inquiry I have completed concerning this ques-

tion. In the next, I will discuss further work I plan to undertake to answer this question.

2.1 Equivariant Additivity

In the first section, I discussed Dunn additivity as a central component for Ek-operads. We hope

that a similar property holds in the Nk-operad case. However, cubes are ill-behaved with respect

to group actions, and the natural replacement for such a statement is to use the equivariant little

disk operadsDV instead. These operads are defined similarly to the little cubes operadCn except

the embedding shape is the unit disk of an orthogonal representation V of G, and G acts on the

operad via conjugation. Moreover, the operads DV for infinite-dimensional representations are
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N∞-operads, and the finite-dimensional versions seem to be reasonable candidates for an Nk-

operad.

In [Szca], I have obtained a version of this classic result for equivariant little disk operads.

Result 1. For inner product spaces V and W which are orthogonal G-representations, there is

a weak equivalence of equivariant operads

DV ⊗DW ≃ DV⊕W

I end up showing a bit more than just this. It is worth highlighting here that this statement

isn’t trivial. The main issue is that the Boardman-Vogt tensor isn’t homotopical. So even if we

take this statement non-equivariantly, as far as I’m aware, there is no proof in the literature for

the additivity of the little disk operads.

My proof relies on a couple of key observations:

1. The definition of equivariant little disksDV works just as well where V is a general normed

vector space and G acts via isometries. We can then view little cube operads as special

cases of little disk operads.

2. For disks d1, d2, if we write the radii as r1, r2 and the length between their centres as D,

then the condition that they don’t overlap can be phrased as D/(r1+ r2)≥ 1. Suppose we

restrict ourselves to little disks where this “separation” quantity is pairwise greater than

some constant k ≥ 1. In that case, this forms a sub-operad Dk
V , which can be shown to be

weakly equivalent to the original.

Using the first observation, I extended the classical proofs to this generality to get:

Result 2. There is a weak equivalence of equivariant operads

DV ⊗DW ≃ DV
∞
⊕W

where V
∞
⊕ W is V ⊕W with the a product sup-norm1.

The dependence on the product sup-norm here is unsatisfactory. For instance, such a product

doesn’t preserve orthogonal representations. The second observation is the starting point for my

following result, which allows us to compare little disk operads over different norms:

Result 3. For p, q ≥ 2, there is a weak equivalence of equivariant operads

D
V

p
⊕W
≃ D

V
q
⊕W

where V
p
⊕W is V ⊕W with the p-product norm.

1For a product p-norm I mean ||(v, w)|| := ||(||v||, ||w||)||p. This forms a norm on V ⊕W where G still acts isometri-
cally.
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The idea is reminiscent of the usual proof of the equivalence of finite dimensional topological

vector spaces given by p-norms. We can choose higher and higher k’s to define embeddings of

the operads as symmetric sequences where each alternate operad is weakly equivalent to each

other:

Dk1

V
p
⊕W
,→Dk2

V
q
⊕W
,→Dk3

V
p
⊕W
,→Dk4

V
q
⊕W

.

However, the operadic structure is sensitive to the change in shape, so this doesn’t immediately

give an equivalence of operads. I get around this by using the Boardman-Vogt resolution to

interpolate between different operadic structures.

Hence, we find that the exact norm used isn’t that relevant, and we obtain a flexible additivity

result. This gives us the additivity of little disks of orthogonal representations as a special case.

It also gives the classic result as a special case. In a very satisfying way, it also provides a direct

geometric proof of the equivalence between the little disks and little cube operads. While known,

this result has only been proven in the literature via an indirect zigzag of equivalences.

One immediate application of this result is that it allows us to automatically impose extra

structure for N∞-operads modelled by little disk operads. For instance, given some G-universe

U , since U = U ⊕ U we get that DU = DU ⊗DU . Hence, by the defining property of the tensor,

any DU -algebra X is also a DU -algebra in DU -algebras.

2.2 Norm maps for coinduced Real Bordism

One interesting property ofN∞-operads is that they are closed under coinduction. This is useful,

since given a H-spectrum X which is O -algebra for, the HHR norm N G
H X is an algebra over the

coinduced operad CoindG
H(O ) :=MapH(G,O ) which is an N∞-operad.

In [Szcb], I study the fixed points of coinduced equivariant little disk operads CoindG
H(DV ). The

goal is to understand these better as the fixed points determine what kind of norm maps such an

operad encodes, and so gives information on the algebraic structure of the HHR norms N G
H X for

spectra X that are natural candidates for algebras over “Nk-operads”. Moreover, perhaps closure

under coinduction is a property to expect from Nk-operads, so these are possible models for such

operads.

I have shown some general combinatorial results on the homotopy of the fixed points of

CoindG
H(DV ). In general, they are determined by the fixed points of the original DV , which

themselves are homotopic to orbit configuration spaces on V by a result of Hill’s [Hil22].

Unfortunately, such formulas are not particularly enlightening. However, an interesting case

is when we are dealing with the coinduced objects of so-called Eσ-algebras, which we can view

as Dσ-algebras. Here σ is the non-trivial C2-representation. These Eσ-algebras have found use

in recent years. For instance, Hahn-Shi [HS20] use Eσ-algebras in their proof that the complex

orientation for Lubin-Tate spectra MU→ En can be refined to a Real orientation MUR→ En.

In the Eσ case for fixed points of the coinduced operads, my results specialize to the following.
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Result 4. For k < s, the admissible C2k -sets of CoindC2s

C2
(Dσ) are of the form

T = a · C2k/e⨿ ε · C2k/C2k

where a ∈ N and ε= 0,1. In this case we have that

coindC2s

C2
(Dσ)Γn ≃ EmbC2(2ka · C2/e,σ)2

s−k

where Γ is the graph subgroup of T , and n= |T |.

In particular, we find that this is nonempty, and so we have that CoindC2s

C2
(Dσ)-algebras X have

norm maps of the type
∨

a

�

∨C2s X
�
∨

ε

X → X .

The norms of Real Bordism MU ((G)) := N G
C2

MUR and related spectra are a significant area of

research and feature heavily in modern computations in chromatic homotopy theory. Recent

work by Beaudry-Hill-Lawson-Shi-Zeng [Bea+22] has investigated the norms of quotients of real

bordism by permutation summands:

Q :=MU((G))R /(G · x1, . . . , G · xn).

We can apply our results to this case as follows: Due to the additivity, we can view MUR as a

Eρ-algebra in C2 –E∞- algebras. We then get the following result by norming this up and using

a result from Hahn and Wilson [HW18].

Result 5. For G = C2n
, the quotients Q are CoindG

C2
(Dσ)-algebras in MU((G))R -modules.

Using our previous result, we uncover that these quotients have norm maps of the type de-

scribed above. This may prove useful for future calculations.

3 Future Work

3.1 Nk-operads

While equivariant little disks are good candidates forNk-operads, we don’t expect them to model

all possible such operads. In theN∞-case, Blumberg and Hill show that there are linear isometry

operads that are equivalent to any little disk operads. Since the Nk-operads should describe the

same range of possible norm maps, just encoding less higher homotopic information, we don’t

expect that the little disks are sufficient. This behaviour is in contrast to the non-equivariant

case, where such operads can be defined as weakly equivalent to the little disks.

Instead, we could construct these operads more abstractly. One idea is to use Barwick’s op-

erator categories [Bar18]. The category of finite ordered sets O is the category that controls the
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range of possible multiplications of non-symmetric operads. Barwick’s theory shows how to con-

struct both (non-symmetric) Complete Segal Operads and Lurie’s∞-operads. This gives us a

weak notion of operad instead of the strict kind I’ve used up to this point. Here, the E1-operads

are given by cofibrant replacement of the unit operads. The higher Ek-operads are given as cofi-

brant replacement of the unit operads over the wreath iterates O(n) := O ≀O ≀ · · · ≀O. Since we

know combinatorially what multiplications to expect, it seems possible to use (some extension)

Barwick’s theory to construct a notion of Nk-(∞-)operads.

Question 2. Can we construct a model for (the homotopy category of) Nk-operads by using

Barwick’s operator categories and picking the correct operator categories?

An abstract definition like the above would be difficult to work with, so more geometric mod-

els would be preferable. In the N∞, there are equivalent little disk operads over non-equivalent

representations. For instance, if I , I ′ are non-isomorphic nontrivial representations of C5, then

we have that D(R⊕I)∞ ≃ D(R⊕I ′)∞ . I suspect something similar happens in the finite case. Un-

derstanding this may provide clues into how we can change the little disk operads and construct

better geometric models for Nk-operads.

Question 3. Do we similarly get equivalences in the finite case? i.e., is there a weak equivalence

DR⊕I ≃ DR⊕I ′?

One possible way to approach this might be to extend Berger’s theory of cellular Ek-operads

[Ber]. Berger defines cellular En-operads as sub-operads of combinatorial E∞-operads. The idea

would be to extend this equivariantly and then use the N∞ case.

3.2 Equivariant Additivity

While I have proven additivity for the little disks, the question arises: what other operads have

an additivity property? In some respects, additivity is a defining property for Ek-operads, and

so any notion of Nk-operads should also have such a property. In particular, non-equivariantly,

it has long been held that cofibrant Ek operads have an additivity property [FV15]2

An essential part of my proof of additivity for little disks is the notion of “separateness,” which

allows us to restrict the size of little disks. Intuitively, this implies that the homotopy of little

disks depends only on the relative configurations of the centres of the disks. However, this idea

is already captured in the non-equivariant case by the Fulton-Macpherson Operad Fm, which is

weakly equivalent to little disks. This leads me to conjecture the following

Conjecture 1. There is a weak equivalence of operads

Fm ⊗Fn ≃Fm+n

2It isn’t well known, but this paper has a mistake in it, so the status of this result is unclear. Either way, it is almost
universally expected that such a result should hold in some form.
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which can also be extended equivariantly.

Moreover, Fm are almost cofibrant. So this would be an interesting connection between the

two approaches to additivity in the classic strict models – the combinatorial one via universal

cofibrant models and the geometric one by little disks.

Equivariance can also feature more strongly in additivity. In particular, since the Boardman-

Vogt Tensor is symmetric monoidal, we can define a corresponding tensor induction

indG
H : Op(H)→ Op(G).

This allows us to construct G-operads, and understanding the homotopical properties of this

functor would be interesting. In connection with additivity, we would expect the following

holds

Conjecture 2. For a H-representation V , we have a weak equivalence of G-operads

indG
H(DV )≃ DindG

H V .

More generally, for a good notion of NV -operads there is a notion of induction

indG
H : NV -operads→ NindG

H V -operads

with good homotopical properties.
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